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Abstract

With the adoption and use of equation EIwIV � kw � q for track analyses, various methods for the determination
of k, the rail support modulus, were proposed during the past several decades. However, some of these methods are
di�cult to use or are of questionable validity. Therefore, at ®rst, a simple yet accurate method that is consistent

with this equation is presented and its use is illustrated on practical examples. Then, other published methods are
critically reviewed and their shortcomings are pointed out. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The standard analysis of cross-tie tracks assumes that the rail responds like an elastic beam that is
attached to a continuous base of closely spaced elastic springs. The corresponding governing equation is

EI
d4w

dx4
� kw�x� � q�x� �1�

in which w(x ) is the vertical de¯ection of the rail axis at point x, EI is the vertical ¯exural sti�ness of
the rail, q(x ) is the vertical load caused by the wheels, and

kw�x� � p�x� �2�

is the contact pressure between the rail and its base. k is denoted as the rail support modulus or track
modulus. Eq. (1) is recommended in the AREA Manual (1991, Section 22, Part 3).

For one wheel load of magnitude P, shown in Fig. 1, the de¯ection curve is obtained as
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w�x� � Pb
2k

eÿbx�cos bx� sin bx� �3�

where

b �
���������
k

4EI

4

r
: �4�

For more than one load, the rail de¯ection may be obtained by superposing the e�ects of the various
wheel loads.

For the analysis of a track structure, the parameters that enter expression (3) are needed. E is
Young's modulus of rail steel and is known, I is the bending moment of inertia of the rail under
consideration and is listed in the AREA Manual (1991, Chapter 4), and P is a known wheel load. The
only unknown is the track modulus k.

2. An early method for the determination of k

In this approach, k is determined by equating a measured rail de¯ection at one point with the
corresponding analytical expression based on Eq. (3). For several decades, promoted by the research of
Timoshenko and Langer (1932), the used loading device consisted of one axle, as shown in Fig. 2. In
this procedure the rail de¯ection at the wheel, wm, caused by one wheel load P, is recorded and then
collocated (i.e. equated) with the corresponding analytical expression obtained from Eq. (3) at x � 0;
namely, by setting wm � w�0� in Eq. (3). The resulting equation is

wm � Pb
2k
�

P

���������
k

4EI

4

r
2k

: �5�

Fig. 1. Rail subjected to a wheel load.

Fig. 2. Talbot committee loading device (Talbot Committee, 1918).
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Solving it for k, the only unknown, yields

k � 1

4
3

��������������
P4

EI w4
m

s
; �6�

an explicit expression for the rail support modulus.
As an example consider a track with 136 RE rails loaded by one axle with a wheel load P = 30,000

lb. The recorded de¯ection caused by P is wm � 0:12 in. According to Eq. (6) the corresponding rail
support modulus (i.e. track modulus for one rail) is

k � 1

4
3

�������������������������������������������������������
�30,000�4

30� 106 � 95:00� �0:12�4

s
� 2775

ÿ
lb=in:2

�
: �7�

The above method is very simple, since it requires only one de¯ection measurement and a simple
calculation. Another advantage is that because of the bending sti�ness of the rail the ballast-subgrade
conditions are averaged out over the a�ected track section. Because of its simplicity, Eq. (6) is being
recommended for the calculation of the track modulus k, even in the recently published texts on railroad
engineering. For examples refer to work by Hay (1982, p. 262) and to Eisenmann (in Fastenrath, 1981,
p. 36).

The major shortcoming of using Eq. (6) for the determination of the track modulus k is that it
requires a special test set-up with one-axle wheel loads. One such set-up was used by the Talbot
Committee (1918) for determining rail de¯ection pro®les. It consisted of a ¯at car loaded with rails
weighing 25±50 tons, and equipped with load indicating screw jacks, as shown in Fig. 2.

The outer jacks were used to simulate two-axle loadings of a truck, whereas the middle one simulated
a one-axle load. Cars of the same type have been used for the determination of track modulus in
western Europe (Driessen, 1937; Birmann, 1957; Nagel, 1961) and in the former USSR (Kuptsov, 1975)
to simulate a one-axle load. A static one-axle loading device was also used by Zarembski and Choros
(1980) in the AAR laboratory in Chicago. But such special one-axle loading devices are, generally, not
available to railway engineers; or for that matter, not even to the majority of railway researchers.

It was therefore essential to establish a procedure that retains the simplicity of the above method, but
is able to utilize any available car or locomotive on two or three-axle trucks as a loading device. This
was done by Kerr (1983, 1987).

3. The Kerr method for determination of k using any available car or locomotive

To demonstrate this method, consider a car on two-axle trucks, as shown in the insert of Fig. 3. The
analytical expression for the rail de¯ection at the left wheel of truck (I) is obtained by superposition,
using Eq. (3). Since all wheel loads of a truck are equal, but the load exerted by each truck may be
di�erent, we set

P1 � P2 � P and P3 � P4 � nP �8�
where n is known. The number n is obtained by weighing; namely by placing the truck (I) and then
truck (II) on a track scale.

The analytical expression for the vertical rail de¯ection at the left wheel of truck (I), caused by all
four wheels of the two trucks, is obtained by superposing the corresponding w�x� expressions given in
Eq. (3). It is, since l1 � 0,
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w�0� � Pb
2k
� Pb

2k
eÿbl2 �cos bl2 � sin bl2� � nPb

2k
eÿbl3�cos bl3 � sin bl3 �

� nPb
2k

eÿbl4 �cos bl4 � sin bl4�,
�9�

where

b � 4

���������
k

4EI

r
: �10�

The rail support modulus k is obtained by collocating (equating) this de¯ection with the de¯ection
measured at the left wheel, wm; namely w�0� � wm: This yields

wm

P
� b

2k

�
1� eÿbl2 �cos bl2 � sin bl2� � neÿbl3 �cos bl3 � sin bl3� � neÿbl4�cos bl4 � sin bl4 �

�
: �11�

In above equation all quantities, except k, are known for a given ®eld test. This equation is equivalent
to Eq. (5) for one wheel load. Whereas Eq. (5) was solved explicitly for k, this is not possible for Eq.
(11).

To avoid involved solutions of the above transcendental equation for k, the right-hand side of Eq.
(11) was evaluated numerically for given sets of (E, I, wm, P ) values by substituting di�erent values of k,
from the range 500RkR9000 lb/in.2 It was assumed that the wheel distances are those of a freight car
with l1 � 0, l2 � 5 ft 10 in. = 70 in., l3 � 46 ft 3 in., and l4 � 52 ft 1 in. (distance between truck centers
is 46 ft 3 in.). The results of this numerical evaluation are presented graphically in Fig. 3.

Fig. 3. Master chart for the determination of k using a vehicle on 2-axle trucks.
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To check the e�ect of truck (II) on the results, the evaluations were conducted for n = 1.0, 0.5, and
0. It was found that for the wheel set distances l3 and l4 used, truck (II) had no noticeable e�ect on the
wm=P values, even for k as low as 1000 lb/in.2 Thus, whether the wheel loads of truck (II) are equal to
those of truck (I) (i.e. n = 1) or they are only about one half of those of truck (I) (i.e. n � 0:5), the
curves presented in Fig. 3 are still valid. This is a useful ®nding, since the vertical forces a loaded car, or
a locomotive, exert on their trucks generally di�er.

The graphs presented in Fig. 3 are for rails 100, 115, and 140 RE. Those for other rail sizes were not
included due to space limitation between the shown curves. However, because of the proximity of the
presented curves, values for the missing rail sizes may be easily obtained by interpolation. The same
argument applies to worn rails.

It is proposed to use the graphs in Fig. 3 for the determination of the k modulus, as follows: First
measure the de¯ection wm caused by a car on two-axle trucks with wheel loads Pm, as shown in the
insert of Fig. 3. Then form wm/Pm. The graph for the corresponding rail yields directly the k-value.

As an example, a loaded freight car on two-axle trucks is chosen as a loading device for the ®eld test
to be performed, at a track location of interest. As a ®rst step, the wheel loads of one of the trucks, say
truck (I), are determined by placing the truck on a car scale for weighing. It was found to be 118,400 lb.
Assuming that each of the four wheels in truck carries approximately the same load, the wheel load Pm

is calculated as

Pm � 118,400=4 � 29,600 lb � 14:8 tons: �12�

Next, a ®ne scale equipped with a magnet is attached vertically to the rail web, at the track location of
interest. Then the test car is moved to this location. When the front wheel of truck (I) reaches the point
above the scale, the vertical rail de¯ection is recorded using a level placed about 30 ft from the rail; say
wm =0.15 in. The ratio wm/Pm is then formed; namely

wm

Pm

� 0:15

14:8
� 0:0101 in:=ton: �13�

The test was conducted on a track with 132 RE rails that showed minor wear. With wm/Pm =0.0101
in./ton, the graphs in Fig. 3 yield directly

k � 2730 lb=in:2 �14�

This completes the determination of k at this location. Note, that by using the graphs in Fig. 3, the
track modulus k is obtained for a given wm/Pm-value without any additional calculations.

To determine the k-value at another location, move the ®ne scale and then the test car to the new
location, measure wm, calculate wm/Pm, and get the corresponding k-value from Fig. 3.

The procedure for determining the track modulus using a locomotive on two-axle trucks is the same
as the one discussed above, except that Eq. (11) has to be evaluated for di�erent values of the axle
spaces l2, l3, l4, if the wheel loads of truck (I) are the same.

The graphs in Fig. 3 exhibit an interesting feature. When formulating the governing Eq. (1), it was
assumed that the k-value (the sti�ness of the elastic spring layer) represents the response of the base
under the rail, thus, of the cross-ties, fasteners, tie-pads, ballast and subgrade; but not the rail response.
However, according to Fig. 3, as well as Eq. (6), k does depend on the rail size; although this
dependence is very small.

In situations when a locomotive or car on three-axle trucks is to be used as a test vehicle, Eq. (11) has
to be expanded, by including the e�ect of the additional axles. Denoting the wheel loads, shown in
Fig. 4, as
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P1 � P P2 � n2P P3 � n3P
P4 � n4P P5 � n5P P6 � n6P

, �15�

where the n2, . . . ,n6 values are obtained by using a weighing scale and setting w�0� � wm, the formula
that corresponds to Eq. (11) becomes

wm

P
� b

2k

�
1� n2e

ÿbl2�cos bl2 � sin bl2� � n3e
ÿbl3�cos bl3 � sin bl3 � � n4e

ÿbl4 �cos bl4 � sin bl4�

� n5e
ÿbl5�cos bl5 � sin bl5� � n6e

ÿbl6 �cos bl6 � sin bl6�
�
, �16�

noting again that l1 � 0:
Next, the above equation has to be evaluated numerically for various rail sizes and a range of k-

values, as done previously with Eq. (11). The results of this evaluation are to be plotted as graphs in a
master chart, similar to the one shown in Fig. 3. The procedure for determining the rail support
modulus k is as before; ®rst roll the test car on three-axle trucks to the location of interest, next measure
the vertical de¯ection wm at the ®rst wheel with load P1 = P shown in Fig. 4, then form wm/P and get
the k-value from the corresponding graph.

Note, that Eq. 16 was derived for the case when the wheel de¯ection is measured at the ®rst or the
last wheel of the locomotive or car. Should it be planned instead to record de¯ections at any of the
other wheels, then Eq. 16 has to be modi®ed accordingly.

From the above presentation it follows that for the determination of the rail support modulus k, any
car or locomotive may be utilized as a loading device and that only one measured rail de¯ection, wm, is
required. The proposed method avoids the numerical solution of the involved transcendental Eq. (11) or
(16) for the unknown k. It requires only the numerical evaluation of the right-hand side of the
corresponding equation for various k values, which may be easily performed even on a programmable
pocket calculator. The mobility of the chosen car or locomotive and the simplicity of determining the
rail support modulus from one measured de¯ection wm and a graph of the type shown in Fig. 3, allows
for a rapid and economical determination of the rail support modulus k (i.e. track modulus) at various
track locations.

Fig. 4. Car or loc on 3-axle trucks.
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4. Other proposed methods for determination of k

At this stage, it is instructive and useful to discuss other methods for the determination of k that were
proposed in the railroad literature, but are of questionable validity.

In one of these methods, the ®eld test consisted of loading vertically only one tie that was separated
from the rails by removing the fasteners, then by recording the vertical displacement of this tie, and by
calculating the base parameter using Eq. (2) under the assumption that the tie-ballast pressure is
uniform. In one test series, the loads were generated by a freight car of about 16 tons, which was
equipped with two hydraulic jacks (one at each rail seat); a similar set-up to the one shown in Fig. 2.
The jacks, when activated, pressed against the tie, lifting up the car; thus, exerting about 8 tons on each
rail-seat. According to Driessen (1937), 385 tests of this type were conducted before World War II on
the German, Dutch, and Swiss railroads for the purpose of determining the corresponding k-values.
This e�ort was not successful, because it did not yield meaningful results. It is worth noting that tests of
this type were conducted by the German railways (DB) also after 1945, as described by Birmann (1957)
and Nagel (1961).

It appears that the main problem with this method was that the used test, that loaded only one tie,
has two major shortcomings. The ®rst one is that because of the granular nature of the ballast and
subgrade, their material properties may strongly vary along the track. Thus, the loading of one tie, at
di�erent locations along the track, will necessarily show a wide scatter in the obtained data. This is very
apparent from the test data presented by Driessen (1937, p. 123). The second shortcoming is that the
base parameter k, that is a property of a layer of closely spaced individual springs, depends on the size
of the loading area when used for a continuous base consisting of ballast and subgrade (For a recent
proof of this assertion refer to Kerr (1987, p. 40)). Thus, the test that uses only one tie will not yield the
same parameter k as when loading a row of closely spaced ties encountered in an actual track. In this
connection note that according to Wasiutynski (1937), the k-value obtained when loading only one tie is
about twice as large as when using the actual rail-tie structure. The above discussion suggests that, for
the determination of k, the use of tests that load only one separated tie should be avoided.

Another method for the determination of k was proposed and used by the Talbot Committee (1918)
and by Wasiutynski (1937). In this method a car is moved to the track location of interest, and the
caused vertical rail de¯ections at each tie are measured, as shown in Fig. 5. According to the Talbot
Committee (1918) the rail support modulus k is then calculated by dividing the sum of the wheel loads
SP that act on one rail, by the area formed between the undeformed straight rail and the de¯ected rail,
AR.

Fig. 5. Recorded rail de¯ections in depressed region.
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This prescription for the determination of k may be derived from vertical equilibrium of a rail. Noting
that p�x� is the pressure that acts on the rail base (positive upwards), it follows that

SPÿ
�1
ÿ1

p�x� dx � 0: �17�

Noting that p�x� � kw�x�, where k is constant along the track, and by de®nition is valid for one rail
only, above equation becomes

SPÿ k

�1
ÿ1

w�x� dx � 0: �18�

Solving for k we obtain

k � SP�1
ÿ1

w�x� dx

: �19�

Since the integral in the denominator is the area formed by the de¯ected rail, AR, the above k-
expression proves that the prescription by the Talbot Committee satis®es vertical equilibrium.

However, already early tests conducted by the Talbot Committee (1918, Chapter IV) revealed that the
vertical rail de¯ections were not increasing linearly with increasing wheel loads, especially for tracks in
poor condition, since the base sti�ens. A similar type of nonlinear response was recorded more recently
by Zarembski and Choros (1980), for track in good condition but for larger wheel loads.

The observed nonlinearity for relatively light wheel loads was attributed mainly to the play between
the rails and the ties, the play between the ties and ballast, and the bending of the ties while they take
full bearing in the ballast. For heavy wheel loads, an additional contributor to the nonlinear response is
the sti�ening of the track caused by the increasing compression of the ballast and subgrade layers.

To take into consideration this nonlinearity, in a later paper the Talbot Committee (1933, Chapter 37)
recommended to retain the linear analysis based on Eq. (1), but to determine the rail support modulus,
k, using the di�erence between the vertical de¯ections from a heavy and a light car; thus, using the
reduced shaded area shown in Fig. 6. For the determination of k, they proposed the formula

Fig. 6. Reduced de¯ection area.
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k � S�Ph ÿ Pl �
aSm

i�1
ÿ
wh
i ÿ wl

i

� �20�

where a is the center-to-center tie spacing, h corresponds to heavy and l to light wheels and de¯ections.
The justi®cation of this assumption was that the light wheel loads will eliminate the slack at all ties in

the depressed track region and that further rail de¯ections, beyond those caused by the light wheel
loads, will be proportional to the additional loads generated by the heavy wheels. For additional details
refer to Kerr and Shenton (1985). This method was used since then by many railway engineers and
researchers. However it is conceptually incorrect, as explained next.

To demonstrate this point consider, as example, the three curves of rail-tie contact pressure vs. rail
de¯ection at a point x � 0, as shown in Fig. 7. First, assume that each rail is pre-loaded by a uniformly
distributed vertical load, as indicated by the horizontal dashed line. The corresponding vertical
displacements for each rail are uniform, but they di�er in magnitude for each of the cases I, II, and III.
Thus, in all three cases no bending moments are generated in the rails. Then, each rail is subjected
additionally to a wheel load P. Each rail will respond linearly with k � tan a, and the rail de¯ections and
bending moments caused by this additional load P, will be the same for all three cases.

However, when each rail is subjected only to a heavy wheel load P (without a large uniform pre-
loading) the resulting de¯ections and bending moments will strongly di�er from the ones described
above. This was shown analytically by Kerr and Shenton (1986). Thus, when considering rails subjected
to wheel loads whose base exhibits a nonlinear load-de¯ection response as shown in Fig. 7, a situation
encountered especially on North American freight lines, the `soft' part of this response should not be
neglected; otherwise, the determined rail support modulus will be too high.1

Since the `reduced area' method described above requires many rail de¯ection measurements, recently
Selig and Li (1994) proposed to simplify the determination of k by conducting a test that uses a single
increasing wheel load and generates a load-de¯ection curve for one point, of type III in Fig. 7. They

Fig. 7. Contact pressure vs. rail de¯ections.

1 This comment also applies to the tie-paid test as speci®ed in AREA Manual (1993, Chapter 1.9.1.15c).
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proposed to determine the track modulus as k � tan a, where a is the angle of the steep part. This
method for the determination of k is not correct either, since it neglects the `soft' part of the response
curve, and thus will result in a k-value that is too high.

In still another approach to determine the rail support modulus k, various researchers in North
America and Europe assumed that the rail supporting base (consisting of pads, ties, ballast, and
subgrade) may be represented by layers of springs each with a di�erent sti�ness, arranged in series, as
shown schematically in Fig. 8. The resulting rail support modulus for the entire base is

k � 1

1=kp � 1=kt � 1=kb � 1=ks

, �21�

where kp is the corresponding sti�ness of the pad (if used), kt is the sti�ness of the tie (due to the
compressibility of wood in the rail-seat region and tie bending), kb is the vertical sti�ness of the ballast
layer, and ks is the sti�ness of the subgrade. For a discussion of this method refer to Novichkov (1955),
Luber (1962), Shchepotin (1964), Shakhunyants (1965), Birmann (1965/66) and Ahlbeck et al. (1978, pp.
242±243).

This approach, although intuitively appealing, is not practical for the determination of k, because the
correlation of the response of a sample of (disturbed) ballast or subgrade tested in a lab with the
corresponding kb or ks value for an actual track is not very reliable. Also, the ballast and subgrade
properties generally vary along the track and additionally the response of each layer may be non-linear.
Therefore, it appears that this approach is not suitable for the determination of the k-values for actual
tracks.

Finally, it is instructive to discuss the method for the determination of the rail support modulus, used
extensively in the German language railroad literature. For examples of this approach refer to the books
by Hanker (1952, Chapter V.3.d), Schoen (1967, p. 263), Eisenmann (in Fastenrath, 1981, Part 2,
Section 3.1) and FuÈ hrer (1978, Section 3.1.2.1).

Their approach is based on the original assumption by Winkler (Winkler, 1867, Section 195) for the
longitudinal-tie track, that the contact pressure between tie and support is

p��x� � Cw�x�, �22�

Fig. 8. Track model consisting of spring layers.
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where p� has the dimension of force per unit area, and C is the base parameter that is independent of
the tie width. Since, in the di�erential equation for a continuously supported beam

EI
d4w

dx4
� p�x� � q�x� �23�

each term, including p(x ), is of the dimension force per unit length, Winkler formed

p�x� � b0p
��x� � b0Cw�x�, �24�

where b0 is the width of the longitudinal-tie. Substituting it into Eq. (23), Winkler obtained the
di�erential equation

EI
d4w

dx4
� b0Cw�x� � q�x�, �25�

instead of Eq. (1). Subsequently, this equation was adapted by Schwedler, (1882) and it plays a key role
in the often quoted book by Zimmermann (1887, 1930, 1941), for longitudinal-tie tracks.

The multiplication by b0 in Eq. (24), although valid for a Winkler base that consists of closely spaced
independent springs, is of questionable validity when a longitudinal-tie rests on a continuum base made
up of ballast and subgrade. This was shown by Kerr (1987, pp. 39±40).

When the German and Austrian railroad engineers adapted Eq. (25) for the cross-tie track, they faced
the problem of choosing the two parameters C and b0: Since the parameter C was assumed to be
independent of the tie shape, they found it necessary to establish an `e�ective track width' b0 for the
cross-tie track. Saller (1932), assumed that

b0 � 2 �ub

a
, �26�

where �u is the distance from the rail center to the end of tie, b is the width of a cross-tie, as shown in
Fig. 9, and a is the center-to-center tie spacing, as shown in Fig. 10.

In an attempt to prove (or justify) the validity of Saller's assumption for the determination of b0,
stated in Eq. (26), Hanker (1935) transformed the cross-tie track into a pseudo longitudinal-tie track in
accordance with the scheme shown in Fig. 10. As part of this transformation, Hanker introduced a
condition, that the e�ective tie-ballast contact areas for both cases are to be equal. Namely, that

ab0 � 2 �ub: �27�
This condition, solved for b0, yields directly the assumption by Saller in Eq. (26).

The above transformation, and Eq. (26) for b0, was generally accepted in the German language
railroad literature. For examples refer to Hanker (1952), Schoen (1967), Eisenmann (in Fastenrath,
1981, Section 3.1), FuÈ hrer (1978, Section 3.1.2) and Kaess and Gottwald (1979).

Fig. 9. The Saller assumption.
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The condition of equal contact areas was apparently conceived by considerations of vertical
equilibrium and by the notion that for a given rail-seat force the pressures in the e�ective tie-ballast
contact areas should be constant and equal. Namely, that p0ab0 � p02 �ub: This is indeed the case when
the rail support is represented by the Winkler base consisting of closely spaced, independent, springs.
But, it is not true for an actual track base, as described previously. Therefore, the geometrical
transformation shown in Fig. 10 does not correspond to an actual track situation and is of questionable
validity for railroad engineering purposes.

The need to determine the `e�ective track width' b0, arose from the use of di�erential Eq. (25) with
the a priori assumption that there exists a constant parameter C for the rail supporting base. As shown
by Kerr (1987), this is not the case for actual tracks. The determination of the second parameter b0 is
also of questionable validity, as discussed above. Therefore, the use of Eq. (25) in conjunction with the
two parameters b0 and C is not justi®ed, and hence, not advisable.

Because, of the shortcomings of the various published methods for the determination of the rail
support modulus, as described above, it is suggested that for cross-tie tracks, di�erential Eq. (1) with the
one base parameter k, be used. This parameter should be determined from one ®eld measurement using
a test car on one or two axle trucks, as presented in the beginning of this paper.

5. Problems to be considered when determining k

According to the ®ndings by Mair (1976), Kerr and Shenton (1986) and Kerr and Eberhardt (1992),
the wheel loads of the test car, Pm, should be of a magnitude anticipated in revenue service. For the
standard (linear) track analyses based on Eq. (1), the corresponding

k � tan a � pm

wm

�28�

as indicated in Fig. 11, and is determined using Eq. (6) or graphs of the type presented in Fig. 3.

Fig. 10. Hanker transformation of cross-tie to longitudinal-tie track.
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This procedure yields rail bending moments that are on the safe side. However, the corresponding
calculated rail seat force, Fmax, used for the determination of the needed tie-plate size and the required
depth of the ballast layer, is grossly underestimated, as shown by Kerr and Shenton (1985, 1986). The
`linear' Fmax-value has to be multiplied by a correction factor of 1.5, in order to represent the actual
conditions in track. This was done by Kerr (1998).

Next, we consider three other problems that have to be taken into consideration when determining k.
They are: (1) the e�ect of time-dependent rail de¯ections at the wheels after the test vehicle is placed on
track, (2) the e�ect of thermal tension or compression forces in a CWR on the determined k-value using
Eq. (6) or the graphs of Fig. 3 (that do not include axial forces), and (3) the e�ect of ballast disturbance
on the rail support modulus k.

During some loading tests for the determination of k, it was observed that after placing the test
vehicle on the track, in addition to the instantaneous rail de¯ections, the rails continued to de¯ect with
time, especially in the vicinity of the wheel loads. In such cases the question arises as to what is wm and
when should it be recorded?

When the rails continue to de¯ect, this indicates that the base is visco-elastic. This is generally caused
by a slow squeeze-out of the water that is trapped in a subgrade layer of poor permability (like clay or
silt). For these cases the elastic springs in the Winkler model, shown in Fig. 1, have to be augmented by
including viscous elements, as shown in Fig. 12.

Both models exhibit an instantaneous elastic de¯ection. However, in Case (a) the de¯ections continue
for a long time (which may occur for very thick clay layers) whereas in Case (b) after a relatively short
time the non-elastic de¯ections decrease substantially (which may occur for very thin clay layers).

Fig. 11. Rail de¯ection vs. rail pressure.

Fig. 12. Foundation models for time dependent base de¯ections.
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Often, the track modulus k is needed for main line tracks, that are subjected to moving trains. In
these cases there is no su�cient time for the trapped water to be squeezed out, and the track will
respond elastically for both cases shown in Fig. 12. The corresponding rail support modulus k is then
determined as discussed previously, by recording wm immediately after loading and utilizing Fig. 3.
When a train stops on the track for a prolonged period of time, with a base that responds like the

models in Fig. 12, then the maximum rail de¯ections and bending moments, hence the rail stresses, will
di�er from the elastic case. The analysis of these cases is more involved and requires solutions for a rail
on a corresponding visco-elastic base.

The second problem to be clari®ed is the e�ect of axial tension or compression forces in the CWR,2

caused by changes in the rail temperature, on the determination of k. To do this, consider a rail-in-track
subjected to a uniform tension force N0 and a wheel load P, as shown in Fig. 13.

The governing di�erential equation for this rail is

EIwIV ÿN0w
00 � kw � q ÿ1 < x <1, �29�

where N0w
00 is the term added to Eq. (1) in order to include the e�ect of the axial tension force. The

resulting de¯ection at the wheel load is (HeteÂ nyi, 1947, Chapter VI)

w�0� � P
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Setting w�0� � wm it follows that
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When N0 � 0, above equation reduces to Eq. (5), as expected. When N0 is a compression force, N0 is
replaced by �ÿN0� in the above equations.

Eq. (31) was evaluated for the 115 RE rail, N0 = 0 and 250 tons, for a range of k-values. The
results are shown in Fig. 14. Compare these graphs with the ones of Fig. 3.

Fig. 13. Rail-in-track subjected to axial force N0 and wheel load P.

2 CWR stands for Continuously Welded Rail.
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Noting that N0 � 50 tons (100,000 lb) corresponds to a temperature change from neutral3 of about
22.28C (408F) , it is concluded that for the anticipated range of temperature changes, the axial force N0

has a negligible e�ect on the determined k-value, using Eq. (6). This also applies to Fig. 3 for test cars
with two-axle trucks. Thus, tests for the determination of the track modulus k for CWR tracks may be
conducted at any reasonable ambient temperature.

In concluding this presentation, on the determination of the rail support modulus k, it should be noted
that when the ballast-in-track is disturbed (for example, by tamping after timbering and surfacing or by
spot renewal), the k-value drops in the respective region. Typical k-values at a track location of interest,
as a�ected by a ballast disturbance and then by the accumulated tonnage of passing trains, is shown in
Fig. 15. Note that, with increasing accumulation of tonnage after the track was tamped (or was locally
disturbed), the k-value increases to a `®nal' value, say to 3000 lb/in.2, for a well-maintained wood-tie
track. Thus, whereas a track disturbance lowers the k-value, the moving tra�c tends to restore it.

This track behavior should be taken into consideration when attenpting to determine the k-value at a
speci®c location of a railroad track.

6. E�ect of dynamics on track design analyses

More than a century ago Eq. (1), EIwIV � kw � q, was introduced for the analysis of railroad tracks.
The historical evolution of the various uses of Eq. (1), as well as the controversies and related ®eld tests
to prove or disprove the various assumptions, were presented by Kerr (1976).

Since World War II, Eq. (1) was adopted as a standard for track analyses in North America, Europe,
and the railways of the former Soviet Union.

Fig. 14. E�ect of N0 on wm/P vs. rail support modulus k.

3 The neutral temperature in CWRs is the rail temperature at which the axial forces are zero. In North America it is generally in

the range of 858F to 1158F. It varies with the geographical location of the track territory under consideration; the high values are

used in the southern part of the USA to prevent track buckling.
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Eq. (1) describes the static rail response. The generalization of this equation to dynamic problems
encountered di�culties, in part because of the unpredictable properties of the subgrade and of ballast
compaction along thousands of miles of mainline track. Also, the condition of every car in a train, as
a�ected by wear, varies depending on the maintenance standards of the car owner. This is complicated
further by the fact that the cars of one railroad often travel over the tracks of another.

Therefore, the practice that evolved throughout the world is to include the dynamic e�ects of the
moving trains by multiplying the static wheel load by a `speed-e�ect coe�cient'. This coe�cient is
obtained from ®eld measurements of rail strains, caused by actual trains (passenger and freight) moving
in the speed range of 10±150 mph. In this approach, the rail support modulus k is determined from a
static ®eld test, as described in this paper.

For a survey of dynamic analyses of continuously supported beams subjected to moving loads, refer
to Kerr (1981). For a more recent publication directly related to railway tracks, refer to Knothe and
Grassie (1993).
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